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Abstract

We consider direct markets, pure exchange economies in which agents supply
their time, when they are subject to location, time, and free disposal constraints.
If agents’ entire time endowment has to be devoted to the market (no free-
disposal), such economies generate the entire class of TU-games, proving that
every TU-game is a market game, and thus generalizing Shapley and Shubik’s
(1969) and Garratt and Qin’s (2000) results. Markets in which free-disposal of
time is possible (i.e., agents can be idle or devote part of their time to non-
market activities) generate the class of monotonic TU-games.

Key words: TU market games, direct markets, equivalence between markets
and games

1. Introduction

This paper belongs to the branch of literature initiated by Shapley and
Shubik’s seminal work relating economies and coalitional transferable utility
(TU) games. Shapley and Shubik (1969) proved that a TU-game can arise from
a pure-exchange economy (called a market) if and only if it is totally balanced.
We prove here that, if markets are subject to time, location, and free-disposal
constraints, a game does not need to be totally balanced to be a market game.
In fact, every TU game is a market game. Our approach does not require the
existence of a large number of players (see Wooders (1994)) or public goods (see
Meseguer-Artola, Wooders, and Martinez-Legaz (2003)).

Shapley and Shubik (1969) propose procedures to associate each game with
a market and each market with a game. Given a TU-game v, they construct a
particular exchange economy called the direct market of v. In such direct market,
agents are the players of v and they buy and sell their productive time. Utilities
are measured in units of money, and agents can exchange commodities and
transfer money in any amount. Utility functions are identical for all agents and
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maximize aggregate production by coalitions given a certain vector of productive
times. On the other hand, a market game is a cooperative game generated from
an economy. It sets the worth of every coalition equal to the maximum utility
that coalition can achieve by using the endowments of its members. Shapley and
Shubik (1969) show that every totally balanced game is the game generated by
its direct market, and that every game generated from a market must be totally
balanced.

Garratt and Qin (2000) pointed out that since timing considerations have
an impact on the feasible allocations in a market, they also affect the class of
games that can be generated from markets. As in Shapley and Shubik (1969),
they consider direct markets in which time can be divided among various pro-
ductive activities. However, they assume that the production process requires
the physical presence of agents and thus, agents cannot be in two places at once.
Besides, all productive activities must take place during a predetermined time
interval. They call such economies time-constrained and prove that there is a
one-to-one and onto mapping between these and the family of super-additive
TU-games, a strict superset of the class of totally balanced games.

In this paper we show that by taking into account not only time, but also
location (or space) constraints in a market, every TU-game can be represented
as a market game. Starting from Garratt and Qin’s (2000) framework, we
consider the case in which all productive activities require the exclusive use of
a given facility. For example, imagine a conference room which can be booked
for various talks, but cannot be used for two (or more) talks simultaneously. If
we assume, as in the previous literature, that agents’ time endowments must be
entirely devoted to the market (i.e., no free-disposal of time) then every TU-
game can arise from such a market. Relaxing this assumption by considering
markets in which some agents may remain idle for a fraction of their time leads
to monotonic TU-games.

The paper is organized as follows. In Section 2 we introduce some notation
and basic definitions. Economies with time and location constraints are analyzed
in Section 3, where it is proved that every TU-game is a market game arising
from an economy without free disposal, and that markets with free-disposal
generate monotone games. Section 4 concludes.

2. Definitions and Notation

Let N be a finite set of n players and N the family of all non-empty subsets
of N . Let ∆N the unit simplex in RN and ∆N the unit simplex in RN . For
every i ∈ N , let ei ∈ ∆N be the vertex corresponding to i. For every S ⊆ N , let
1S ∈ {0, 1}N denote the indicator function of S and let eS ∈ ∆N be the vertex
corresponding to S.

A TU-game (or simply a game) on N is a mapping v : 2N → R+ such that
v(∅) = 0. Let ΓN denote the family of games on N . For every S ⊆ N , v(S) is
called the worth of coalition S. The restriction of a game v to S ⊆ N , is the
game v|S on S such that v|S(T ) := v(T ) for all T ⊆ S. Given v ∈ ΓN , a possible
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outcome is represented by a payoff vector u ∈ RN that assigns to every i ∈ N a
payoff ui.

A game v ∈ ΓN is called superadditive if v(S) + v(T ) ≤ v(S ∪ T ) for all
S, T ∈ N such that S ∩ T = ∅. It is called monotonic if v(T ) ≤ v(S) for all
∅ 6= T ⊆ S ⊆ N . A collection of coalitions B ⊆ N is called balanced if there
exist positive numbers (λS)S∈B such that for every i ∈ N ,

∑
S∈Ni

λS = 1. The
numbers λS are called balancing weights. A game v ∈ ΓN is called balanced
if
∑
S∈B λSv(S) ≤ v(N) for every balanced family B with balancing weights

(λS)S∈B. A game v is called totally balanced if v|S is balanced for every S ⊆ N .

3. Time- and location-constrained market games

The procedure we follow to characterize games generated by markets is used
by Shapley and Shubik (1969). We start with an arbitrary game and use it to
construct a direct market. Then we use the direct market to generate a TU-
game. Finally, we show that the initial game and the market generated game are
identical. The construction of our market is similar to Garratt and Qin’s (2000),
with an added location constraint on the set of feasible time arrangements.

3.1. No free-disposal and arbitrary TU-games
Let v ∈ ΓN . We associate to v a market (or pure exchange economy) E(v) as

follows. The set of agents in the market is N and the commodity space is [0, 1]N .
Commodities are interpreted as agent-specific time. Each agent i ∈ N has an
endowment ei (thus, each agent is endowed with one unit of her own time) and
a (common) utility function u : [0, 1]N → R+ defined for every x ∈ [0, 1]N by:

u(x) = max
λ:N→R+

∑
S∈N

λSv(S), subject to (1)∑
S∈N

λS1S = x, (i)∑
S∈N

λS ≤ 1. (ii)

For every x ∈ [0, 1]N , let the set of feasible schedules be denoted by F(x) :=
{λ : N → R+ | λ satisfies (i) and (ii)} and let A(x) ⊆ F(x) denote the set of
solutions of (1).

Remark 3.1 Note that the utility function is well-defined for every x ∈ [0, 1]N

and quasi-concave. Indeed, the function λ 7→
∑
S∈N λSv(S) is linear, hence

continuous, and the feasible set F(x) is clearly compact. To see that F(x) is
non-empty, let x ∈ [0, 1]N and define, recursively, m0 = 0,

mk = min{xi −
k−1∑
j=0

mj | i ∈ N, xi >
k−1∑
j=0

mj},
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Sk = {i ∈ N | xi ≤
k∑
j=1

mj},

and λSk
= mk for every 1 ≤ k ≤ |{xi | i ∈ N}|. Let λS = 0 for every other S ∈

N . By construction λ satisfies (i) and
∑
S∈N λS = maxi∈N xi ≤ 1, so λ ∈ F(x)

and the utility is well-defined. For quasi-concavity, consider x, x̄ ∈ [0, 1]N and
α ∈ [0, 1]. Let λ ∈ F(x) and λ̄ ∈ F(x̄). Then αλ+ (1−α)λ̄ ∈ F(αx+ (1−α)x̄)
and thus u(αx+ (1− α)x̄) ≥ αu(x) + (1− α)u(x̄).

To understand the definition of the utility function it is helpful to think of
the agents as being managers in charge of deciding how to schedule operating
coalitions at a given facility during a limited time interval. It is assumed that
every coalition needs to use the facility to perform its productive activity, and
two coalitions cannot use the facility at the same time. We call this restriction
the location constraint. The facility is also open only for a limited time and
thus all productive activities have to be scheduled during that time interval.
We call this the time constraint. However, the time that each member of a
coalition supplies is perfectly divisible, and each individual can divide her time
among various operating coalitions. It is also assumed that, given the right
to use the space of the facility, each coalition has a constant returns to scale
technology. That is, a coalition S that uses the facility for a fraction λS of the
time produces λSv(S) units of output. A vector x ∈ [0, 1]N is interpreted as
unscheduled time, and thus any solution of (1) is an optimal schedule under the
given location and time constraints. The weight λS specifies the amount of time
during which coalition S is active. The first constraint is the requirement that
each agent i is scheduled for exactly xi units of her available time (thus, time is
not disposable), while the second constraint controls the time during which the
location is available. Compared to Garratt and Qin’s (2000) formulation, the
definition of the utility function allows for only one coalition to be active at any
moment, capturing the idea of space limitation.

The following lemma shows that, given time and location constraints, the
only feasible way to allocate the full time of the members of coalition S is to
have the entire coalition active.

Lemma 3.2 For every v ∈ ΓN and every S ∈ N , u(1S) = v(S).

Proof. Let λ ∈ F(1S). According to (i), for every i /∈ S,
∑
T3i λT = 0 and

thus λT = 0 for every T * S. On the other hand, for every i ∈ S,
∑
T3i λT = 1.

Choosing an arbitrary i ∈ S and T0 ⊂ S such that i /∈ T0 we obtain, using (ii),
that

1 ≥
∑
T⊆S

λT ≥
∑
T3i

λT + λT0 ≥ 1 + λT0

and thus λT0 = 0. Hence λT = 0 for every T 6= S and λ = eS . We then conclude
that u(1S) = v(S).

Remark 3.3 In the light of Lemma 3.2, the problem of a manager in charge of
allocating the time vector 1S is trivial, since the feasible set is a singleton. This
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is not typically the case for time-vectors x 6= 1S, S ∈ N . Consider for example
N = {1, 2} and x = ( 1

2 ,
1
2 ). The feasible set of a manager in charge of allocating

x is

F
(

1
2
,

1
2

)
=
{

(λ1, λ2, λ12) =
(

1
2
− α, 1

2
− α, α

)
| α ∈

[
0,

1
2

]}
.

Next, we use the location- and time-constrained direct market to generate
a TU-game. We associate to the economy E(v) the game w ∈ ΓN defined as
follows. For every S ∈ N ,

w(S) = max
(xi)i∈XS

∑
i∈S

u(xi), (2)

where

XS =

(xi)i∈S

∣∣∣∣∣∣∣∣∣∣
∀i ∈ S, xi ∈ [0, 1]N ,∑
i∈S x

i = 1S ,

∀i ∈ S ∃λi ∈ A(xi) s.t.
∑
i∈S λ

i ∈ F(1S).


To interpret the characteristic function w, agents in economy E(v) are seen

as managers who schedule the operating coalitions optimally. Thus, to compute
w(S), the time endowment of coalition S is first divided among its members.
Each manager i ∈ S is allocated the right to manage a time-vector xi ∈ [0, 1]N ,
such that

∑
i∈S x

i = 1S . The optimal schedules chosen by managers (λi ∈
A(xi)) can be pooled together to allocate the entire time endowment of coalition
S if and only if they are compatible with the time and location constraints, that
is, if

∑
i∈S λ

i ∈ F(1S). Thus w(S) is the maximum surplus generated by
distributions of the total time endowment for which managers’ solutions to (1)
are compatible.

The following theorem shows that every game v ∈ ΓN can be generated from
its time- and location-constrained direct market E(v). Thus a game does not
need to be totally balanced, or even super-additive to be a market game. Every
TU-game is a market game.

Theorem 3.4 For every v ∈ ΓN and every S ⊆ N , w(S) = v(S).

Proof. Fix S ∈ N . Let (xi)i∈S ∈ XS be an optimal solution to (2) and let
(λi)i∈S be a family of optimal compatible schedules, i.e., λi ∈ A(xi) for every
i ∈ S and

∑
i∈S λ

i ∈ F(1S). Then, according to Lemma 3.2,

v(S) = u(1S) =
∑
T⊆N

(∑
i∈S

λiT

)
v(T ) =

∑
i∈S

∑
T⊆N

λiT v(T )

 =
∑
i∈S

u(xi) = w(S).

Therefore every TU-game coincides with the game generated by its direct mar-
ket.
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3.2. Free disposal and monotonic games
We now consider markets with free disposal, that is, markets in which agents

can remain idle or, equivalently, devote a fraction of their time to non-market
activities. In this case we show that any monotonic game can be obtained as a
market game with free disposal. As before, we define a direct market for every
TU-game and associate a TU-game to every direct market.

In this case, the direct market associated with a game v ∈ ΓN has the same
set of agents and commodity space as before, but the (common) utility function
of the agents is u′ : [0, 1]N −→ R+ defined by:

u′(x) = max
λ:N→R+

∑
S⊆N

λSv(S), subject to (3)

∑
S⊆N

λS1S ≤ x, (i’)

∑
S⊆N

λS ≤ 1. (ii’)

As opposed to the definition in the previous section, constraint (i’) may not
be binding so, this direct market allows for the free disposal of agents’ time. Let
F ′(x) denote the feasible set of schedules for the problem (3) and let A′(x) be
the set of its solutions. In a similar way to Remark 3.1, u′ is well defined and
quasi-concave.

The following lemma shows that an optimal way to allocate the time of the
members of coalition S is to have the most productive sub-coalition of S active.

Lemma 3.5 For every v ∈ ΓN and every S ∈ N ,

u′(1S) = max{v(T ) | T ⊆ S}.

Proof. Let S ∈ N . According to (i’), for every i /∈ S,
∑
Q3i λQ = 0 and thus

λQ = 0 for every Q * S. Hence u′(1S) =
∑
T⊆S λ

∗
T v(T ) for some λ∗ : N → R+

satisfying (i’) and (ii’), which implies that u′(1S) ≤ max{v(T ) | T ⊆ S}. On the
other hand, for every T ⊆ S, eT ∈ F ′(1S), and thus u′(1S) ≥ max{v(T ) | T ⊆
S}.

We associate to this direct market the following game w′ ∈ ΓN . Define for
every S ∈ N :

w′(S) = max
(xi)i∈X̄S

∑
i∈S

u′(xi), (4)

where

X̄S =

(xi)i∈S

∣∣∣∣∣∣∣∣∣∣
xi ∈ [0, 1]N ,∀i ∈ S,∑
i∈S x

i ≤ 1S ,

∀i ∈ S ∃λi ∈ A′(xi) s.t.
∑
i∈S λ

i ∈ F ′(1S).
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Proposition 3.6 For every v ∈ ΓN and every S ∈ N , w′(S) = u′(1S) =
max{v(T ) | T ⊆ S}.

Proof. Fix S ∈ N . Let T̂ ∈ arg max{v(T ) | T ⊆ S} and fix a player j ∈ S.
Define x̂j = 1T̂ and x̂i = 0 for every i ∈ S \ {j}. Additionally, define λ̂j

T̂
= 1

and λ̂iT = 0 for every other pair (i, T ) ∈ S × N . Then, x̂i ∈ A′(x̂i) for all
i ∈ S,

∑
i∈S λ̂

i ∈ F ′(1S), and therefore x̂ ∈ X̄S . Hence, w′(S) ≥
∑
i∈S u

′(x̂i) =
u′(1S).

Conversely, let (x̄i)i∈S be an optimal solution to (4) and let λ̄ ∈
∏|S|
i=1A

′(x̄i)
such that

∑
i∈S λ̄

i ∈ F ′(1S). Then, according to Lemma 3.5,

w′(S) =
∑
i∈S

u′(x̄i) =
∑
i∈S

∑
T⊆N

λ̄iT v(T )


=

∑
T⊆N

(∑
i∈S

λ̄iT

)
v(T ) ≤ u′(1S)

Thus, w′(S) = u′(1S) as we wanted.

The following theorem is a direct consequence of Proposition 3.6 and the
definition of a monotonic game.

Theorem 3.7 Every monotonic game v ∈ ΓN is a location- and time-constrained
market with free disposal.

4. Concluding remarks

We proved that by considering economies with space restrictions in addition
to time constraints, every TU-game can be generated as a market game arising
from an economy with no free disposal, and every monotonic game arises as the
game generated by a free-disposal market. The paper points out to a relationship
between the feasible set of a direct market and the class of games generated
by that market. Markets with smaller feasible set ceteris paribus, generate a
larger class of games. As Shapley and Shubik (1969) proved, markets with
no free-disposal generate the class of totally balanced games. No free-disposal
markets with time constraints generate the family of super-additive games (a
strict superset of totally balanced games), while no free-disposal markets with
both time and location constraints generate the entire family of TU-games.
Free disposal markets with time and location constraints generate the class of
monotonic TU-games.
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